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Abstract

A Tormulation of the variational bound method is presented which toaether with some
previous work can provide both upper and lower bounds on the phase shifts or equivalent
network elements of obstacles located in single and multimode wavequides. As an illus-
tration numerical results are obtained for a rectangular parallel epiped obstacle. The
upper and lower bounds on the phase shifts are quite close to one another.

Introduction

A variational bound principle called
(VBI) originally developed for quantum
mechanical scattering!, was subsequently
extended and applied to the scattering of
electromagnetic waves by isotropic obsta-
cles in single and multimode wavegquides?.
The method described in Ref. 2 provides
only one bound on the scattering parame-
ters. Here we present a formulation
designated as (VBII) for obtaining the
opposite bound. Unlike the usual station-
ary variational principle of Schwinger
and others?® which in general gives neither
upper nor lower bounds.the VBI and VBII
formulation yield bounds which converge
to the correct values from above and
below As an illustration, a numerical
example is presented for a rectanqular
parallelepiped obstacle.

Lower Variational Bound

The variational bound principle (VBI)
provides a lower bound on the normalized
R' matrix in multimode scatterina, or on
the phase shift in the case of a single
mode. We define two dyadic projection
operators P and @, such that for any
vector function J(x,y.z)

PI(x,y,2) ="e(x ,y )
X foe(x',y')-d(x',y ' ,z)dx"dy"

7 e(x,y)-e(x,y)dxdy
and

Q=1-P 3

that is, P projects onto the propagating
mode and Q projects onto the higher
(evanescent) modes. The extension to many
propagating modes is immediate.

Using these projection operators it can
be shown 2-4 that Maxwell's wave equation

-0 x (7 x E) +e (wec) E =0, (1)
reduces to the following expression
P(H + HQGAQH - W) P E = 0 (2)
where E is the electric field, & the
dielectric constant, w the angular fre-

quency, and ¢ the velocity of 1ight. We
also have

H=T+V
W= (w/0)’,
where
~T = Vz

Vo= vv- o+ (1-3)((»/c)2

With H, W, T, and V symbolically identified
with the Hamiltonian and with the total,
the kinetic, and the potential energies,
respectively, we have a connection with the
Schroedinger equation.

Equation (2) cannot be solved since
the Green's function G0 is generally not
known. G2 is defined by

@ = qro(w-n)o1'q. (3)

G <
When, as is generally the case, the
inequality

Q(W-H)Q<0 (4)
is satisfied, it follows that

60<0 (5)

The phase shift nq of the i-th mode
obtained from the static (single mode) or

close coupling (multimode) equations



P(H-W)PEP= 0 (6)

provides a bound on the phase shift Ny of

the original problem corresponding to (2).
This bound is a consequence of the
monotonicity theorem which states that if
the potential V12V2 then n1zNg.

A formulation which is in principle
much superior, in that it supplies a
variational upper bound, as opposed to
Jjust a bound, on the phase shift or the

R' matrix is described in Ref. 2. The VBI
principle takes the form

X[cot(n-8) - cot (nP -8)1< S (7)
for single mode and
C(AR'A - AR'PA) <8 (8)
for multimode, where

s =2 PEP- uQE, dr

+ ] QEy [H+HPG"PH-WIQE dT,  (9)

and where ft is a trial function in Q space
and

6" = PLP(H-H)PT™ P

Variational bounds contain variational
parameters which enable one to approach
monotonically the exact value of some
quantity of interest, while a bound gives
just a number without a means of improve-
ment.

The Opposite Bound

It is possible to obtain the opposite
bound by obtaining a simple numerical lower

bound GE on 60, Thus, let us assume that
we can find an energy W such that

QW >0, (10)
This may be possible when (4) is valid.
We then have
NICR RN (1)
The solution of the equation
B H+ (W-HQ) ™ HQH-uT P E =0 (12)
then provides the other bound, the upper

bound on the ni.

the
is

A variational upper bound (VBII) on
n; is available? If the inequality (10)
satisfied it is shown that

o1 ,
6> (Ww-w®)7 p 1+ F .

x [ EFO1-F) E, dt]”
x4 étF dt = Gg, (13)
where
F= Q(H-WQ) q/(u-uQ). (14)

79

The solution of the equation obtained by
replacing GQ in (2) by the known operator
6Q.
g

PL(H-W)+HQGJOH] PE_= 0 (15)
provides variational upper bounds an the
phase shift. [Note that the‘;erm,;ﬁthr

in (13) integrates over QHPE0 which occurs
in (15)].

Inequalities on trigonometric functions
of phase shifts are normally more useful
than inequalities on the phase shifts them-
selves. By bounding the modified Green's
function? 9Q defined by

C

o[H+HGPH-1060=-q, (16)

<
one obtains the opposite bound on the left
hand side of (7) and (8).

Numerical Example

Lower variational bounds on the even
and odd phase shifts n and n for a
specific case of scattering by a dielectric
obstacle were obtained previously? by
means of (7). For the same case we
determined the (non-variational) upper

bounds on n and n using (12). We have
34°54'< n < 35°39"
19°18'< n < 20°34'.

The upper bounds can be improved by using
the more involved variational expression
(15).

Using (6) and (12), (non-variational)
rough bounds were obtained on the normal-
ized matrix e1ementS!Rf, for an obstacle
located in a multimode waveguide propa-
gating only the TE,, and TE,, modes.

with R!' =
13

corresponds to the even standing waves of
the above modes.

The bounds are

- 0.583 <R, < - 0.496
- 0.999 <R < - 0.627
- 0.223 <R < - 0.147



Conclusion

Formulations for determining upper
and lower bounds, and variational upper
and lower bounds on the network elements
that characterize electromagnetic scatter-
ing bty obstacles in waveguides are described.
Numerical results for certain specific case
are given,
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