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Abstract

A ~ormul ation of the variational bound method is presented which together with some
previous work can provide both upper and lower bounds on the phase shifts or equivalent
network elements of obstacles located in single and multimode wavequides. As an illus-
tration numerical results are obtained for a rectangular parallel epiped obstacle. The

upper and lower bounds on the phase shifts are quite close to one another.

Introduction

A variational bound principle called
(VBI) originally developed for quantum
mechanical scattering, was subsequently
extended and applied to the scattering of
electromagnetic waves by isotropic obsta-
cles in single and multimode waveguides2.
The method described in Ref. 2 provides
only one bound on the scattering parame-
ters. Here we present a formulation
designated as (VBII) for obtaining the
opposite bound. Unlike the usual station-
ary variational principle of Schwinaer
and others3 which in general gives neither
upper nor lower boundsthe VBI and VBII
formulation yield bounds which converge
to the correct values from above and
belowjis an illustration, a numerical
example is presented for a rectangular
parallelepipeds obstacle.

Lower Variational Bound

The variational bound principle (VBI)
p,rovides a lower bound on the normalized
R’ matrix in multimode scattering, or on
the phase shift in the case of a sinqle
mode. We define two dyadic projection
operators P and Q,. such that for any
vector function J“(x,Y,z)

P~(x,y,z) =-e(x ,y )

x f e(x ’,y ’).J(x’,y’,z)dx ‘(jyi

+ J“ e(x,y).e(x,y)dxdy

and

Q=l-p;

that is, P projects onto the propagating
mode and Q projects onto the higher
(evanescent) modes. The extension to many
propagating modes is immediate.

Using these projection operators it can
be shown 2,4 that Maxwell’s wave equation

ijx(;xi)+g(w/c)2E .0, (1)

reduces to the followinq expression

P(H + HQGQOH - W) P ?= O (2)

where E is the electric field, e the
dielectric constant, u the angular fre-
quency, and c the velocity of light. We
also have

H=T+V

~{ = (u/c)2,

where

–T = V2

v = v+. + (l-&)(u/c)z.

With H, W, T, and V symbolically identified
with the Hamil tonian and with the total,
the kinetic, and the potential energies,
respectively, we have a connection with the
Schroedinqer equation.

Equation (2) cannot be solved since

the Green’s function G“ is generally not

known. GQ is defined by

Go ~ QIO(W-H)Q,-lQ
(3)

When, as is generally the case, the
inequality

Q(W-H)Q<O (4)

is satisfied, it follows that

GO<lJ (5)

p of the i-th modeThe phase shift ni
obtained from the static (single mode) or
close couplinq (multimode) equations
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P(H-W)P~p= O (6)

provides a bound on the phase shift ni of

the original problem corresponding to (2).
This bound is a consequence of the
monotonicity theorem which states that if
the potential VTZV2 then n14V2.

A formulation which is in principle
much superior, in that it supplies a
variational upper bound, as opposed to
just a bound, on the phase shift or the

~’ matrix is described in Ref. 2. The VBI
principle takes the form

%[cot(rl-e) - cot (nf’ -0)]< s (7)

for single mode and

-(A”R’A - ;.R’PA) ~ s (8)

for multimode, where

S = 2 PEP. WQEt d~

+ ; QE’t-[H+HPGpPH-W]QEtdT , (9)
-.

and where Et is a trial function in Q space
and

-1
Gp-~,, P[P~W-H)P] P.

Variational bounds contain variational
parameters which enable one to approach
monotonically the exact value of some
quantity of interest, while a bound gives
just a number without a means of improve-
ment.

The Opposite Bound

It is possible to obtain the opposite
bound by obtaining a simple numerical lower

bound G? on GQ, Thus, let us assume that

we can find an energy WQ such that

QHQzWQ>W. (lo)

This may be possible when (4) is valid.
We then have

GQZQ(W-WQ)-’Q :- GLQ . (11)

The solution of the equation

~H+(W-WQ)-lHQH-W] P ;L = o (12)

then provides the other bound, the upper
bound on the Vi .

A variational upper bound (VBII) on the
ni is available! If the inequality (10) is
satisfied it is shown that

-1
GQ? (w-wQ) j 1 + Fit

-1
X [ EtF(l-~) Et d~]

x! EtF d~ = G:, (13)

where
F= Q(H-WQ) Q/(W-WQ). (14)

The solut
replacing

G:.

P[(H-W)

on of the equation obtained by
GQ in (2) by the known operator

HQG:QH] PEG= O (15)

provides variational upper bounds on the
phase shift. [Note that the_t.erm~~tFd~

in (13) integrates over QHPEO which occurs
in (15)].

Inequalities on trigonometric functions
of phase shifts are normally more useful
than inequalities on the phase shifts them-
selves. By bounding the modified Green’s
function4 ,$ Qdefined by

OIH+HGpH-W]~IjO=-Q, (16)

one obtains the opposite bound on the left
hand side of (7) and (8).

Numerical Example

Lower variational bounds on the even
and odd phase shifts n, and n for a
specific case of scattering by a dielectric
obstacle were obtained previously by
means of (7). For the same case we
determined the (non-variational) upper
bounds on n and n using (12). We have

34”54’< q ~ 35°39’.,

19018’s i- s 20034’.

The upper bounds can be improved by using
the more involved variational expression
(15).

Using (6) and (12), (non-variational)
rough bounds were obtained on the normal-
ized matrix elements :~~,1 for an obstacle
located in a multimode waveguide propa-
gating only the TEIO and TE30 modes.

>
/ -R’ R’

13 ]

(),,”- ! “

R;l R’ ~
33

—

with R;3 = R:l,

corresponds to the even standing waves of
the above modes.

The bounds are

- 0.583 : R,, s - 0.496

- 0.999 f R s - 0.627

- 0.223 : ~ < - 0.147
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Conclusion

Formulations for determining upper
and lower bounds, and variational upper
and lower bounds on the network elements
that characterize electromagnetic scatter-
ing ky obstacles in waveguides are described.
Numerical results for certain specific case
are given.
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